Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F.

نویسندگان

  • J Karlseder
  • H Rotheneder
  • E Wintersberger
چکیده

Within the region around 150 bp upstream of the initiation codon, which was previously shown to suffice for growth-regulated expression, the murine thymidine kinase gene carries a single binding site for transcription factor Sp1; about 10 bp downstream of this site, there is a binding motif for transcription factor E2F. The latter protein appears to be responsible for growth regulation of the promoter. Mutational inactivation of either the Sp1 or the E2F site almost completely abolishes promoter activity, suggesting that the two transcription factors interact directly in delivering an activation signal to the basic transcription machinery. This was verified by demonstrating with the use of glutathione S-transferase fusion proteins that E2F and Sp1 bind to each other in vitro. For this interaction, the C-terminal part of Sp1 and the N terminus of E2F1, a domain also present in E2F2 and E2F3 but absent in E2F4 and E2F5, were essential. Accordingly, E2F1 to E2F3 but not E2F4 and E2F5 were found to bind sp1 in vitro. Coimmunoprecipitation experiments showed that complexes exist in vivo, and it was estabilished that the distance between the binding sites for the two transcription factors was critical for optimal promoter activity. Finally, in vivo footprinting experiments indicated that both the sp1 and E2F binding sites are occupied throughout the cell cycle. Mutation of either binding motif abolished binding of both transcription factors in vivo, which may indicate cooperative binding of the two proteins to chromatin-organized DNA. Our data are in line with the hypothesis that E2F functions as a growth- and cell cycle regulated tethering factor between Sp1 and the basic transcription machinery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperation of E2F-p130 and Sp1-pRb complexes in repression of the Chinese hamster dhfr gene.

In mammalian cells reiterated binding sites for Sp1 and two overlapping and inverted E2F sites at the transcription start site regulate the dhfr promoter during the cell growth cycle. Here we have examined the contributions of the dhfr Sp1 and E2F sites in the repression of dhfr gene expression. In serum-starved cells or during serum stimulation, the Chinese hamster dhfr gene was not derepresse...

متن کامل

A single cell cycle genes homology region (CHR) controls cell cycle-dependent transcription of the cdc25C phosphatase gene and is able to cooperate with E2F or Sp1/3 sites.

The cdc25C phosphatase participates in regulating transition from the G2 phase of the cell cycle to mitosis by dephosphorylating cyclin-dependent kinase 1. The tumor suppressor p53 down-regulates expression of cdc25C as part of G2/M checkpoint control. Transcription of cdc25C oscillates during the cell cycle with no expression in resting cells and maximum transcription in G2. We had identified ...

متن کامل

Role of E2F in cell cycle control and cancer.

E2F transcription factors regulate the expression of a number of genes important in cell proliferation, particularly those involved in progression through G1 and into the S-phase of the cell cycle. The activity of E2F factors is regulated through association with the retinoblastoma tumor suppressor protein (Rb) and the other pocket proteins, p107 and p130. Binding of Rb, p107 or p130 converts E...

متن کامل

Transcriptional regulation of the human Sp1 gene promoter by the specificity protein (Sp) family members nuclear factor Y (NF-Y) and E2F.

We analysed in detail the minimal promoter of transcription factor Sp1, which extends 217 bp from the initiation of transcription. Within this sequence we identified putative binding sites for Sp1, nuclear factor Y (NF-Y), activator protein 2 ('AP-2'), CCAAT/enhancer-binding protein ('C/EBP') and E2F transcription factors. In one case, the boxes for Sp1 and NF-Y are overlapping. Gel-shift and s...

متن کامل

Functional conservation of the cell cycle-regulating transcription factor DRTF1/E2F and its pathway of control in Drosophila melanogaster.

The cellular transcription factor DRTF1/E2F is implicated in the control of early cell cycle progression due to its interaction with important regulators of cellular proliferation, such as pocket proteins (for example, the retinoblastoma tumour suppressor gene product), cyclins and cyclin-dependent kinase subunits. In mammalian cells DRTF1/E2F is a heterodimeric DNA binding activity which arise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 1996